Compartir

La Habana, Cuba. – El matemático alemán Felix Hausdorff, nace el 8 de noviembre de 1868 en Breslavia, Reino de Prusia, actual Alemania. Es considerado uno de los fundadores de la topología moderna. Además, contribuyó significativamente a la teoría de conjuntos, la teoría descriptiva de conjuntos, la teoría de la medida, el análisis funcional y la teoría de funciones.

En 1909, mientras ahondaba en el estudio de conjuntos parcialmente ordenados de sucesiones de números reales, encontró lo que hoy se conoce como el principio maximal de Hausdorff; con lo que fue el primero en aplicar un principio maximal en álgebra. En su obra clásica de 1914 Grundzüge der Mengenlehre, definió y estudió los conjuntos parcialmente ordenados de manera abstracta, usando el axioma de elección, y probó que todo conjunto parcialmente ordenado tiene un subconjunto maximal linealmente ordenado. En ese libro, axiomatizó el concepto topológico de entorno e introdujo los espacios topológicos conocidos como espacios de Hausdorff.

En 1914, usando el axioma de elección, obtuvo una descomposición «paradójica» de la 2-esfera como la unión disjunta de cuatro conjuntos A, B, C y Q, donde Q es numerable y los conjuntos A, B, C y BC son mutuamente congruentes. Eso inspiró más tarde la descomposición de la esfera en tres dimensiones de Banach-Tarski. Hausdorff introdujo asimismo los conceptos medida de Hausdorff y dimensión de Hausdorff, que son cruciales en el estudio de la teoría de fractales. En Análisis, resolvió lo que llamamos hoy problema del momento de Hausdorff. Nuestro biografiado publicó aún trabajos filosóficos y literarios bajo el seudónimo de «Paul Mongré».

Felix Hausdorff, se suicida el 26 de enero de 1942 en Bonn, Alemania.