Compartir

El matemático francés Augustin Louis Cauchy, nace en París, Francia, el 21 de agosto de 1789. Miembro de la Academia de Ciencias de Francia y profesor en la Escuela politécnica.

Cauchy fue uno de los matemáticos más prolíficos de todos los tiempos, solo superado por Leonhard Euler, Paul Erd?s y Arthur Cayley con cerca de 800 publicaciones y siete trabajos; su investigación cubre el conjunto de áreas matemáticas de la época.

Fue pionero en análisis donde se le debe la introducción de las funciones holomorfas, los criterios de convergencia de series y las series de potencias. Sus trabajos sobre permutaciones fueron precursores de la teoría de grupos, contribuyendo de manera medular a su desarrollo.

En óptica se le atribuyen trabajos sobre la propagación de ondas electromagnéticas.

En 1814 publicó su obra sobre análisis infinitesimal. Cauchy precisa los conceptos de función, de límite y de continuidad en la forma actual o casi actual, tomando el concepto de límite como punto de partida del análisis y eliminando de la idea de función toda referencia a una expresión formal, algebraica o no, para fundarla sobre la noción de correspondencia. Los conceptos aritméticos otorgan ahora rigor a los fundamentos del análisis, hasta entonces apoyados en una intuición geométrica que quedará eliminada, en especial cuando más tarde sufre un rudo golpe al demostrarse que hay funciones continuas sin derivadas, es decir: curvas sin tangente. (Función de Weierstrass).

Cauchy desarrolló por sí solo la teoría de funciones complejas. El primer teorema fundamental demostrado por Cauchy, ahora conocido como Teorema integral de Cauchy. De gran importancia son sus escritos sobre la propagación de ondas, gracias a los cuales obtuvo el Gran Premio del instituto en 1816. Sus mayores contribuciones a las matemáticas están contenidas en los rigurosos métodos que introdujo. Eso se encuentra principalmente en sus tres grandes tratados: Cours d’analyse de l’École Polytechnique (1821); Le Calcul infinitésimal (1823); Leçons sur les application de calculus infinitesimal; La géométrie (1826–1828); y también en sus Cursos de mecánica (para la École Polytechnique), Álgebra superior (para la Faculté des Sciences) y Física matemática (para el Collège de France).

Cauchy escribió numerosos tratados y publicó 789 artículos en revistas científicas. Esos escritos abarcan temas de gran importancia como la teoría de series (en la que desarrolló con gran perspicacia la noción de convergencia), la teoría de números y cantidades complejas, la teoría de grupos y sustituciones, la teoría de funciones, ecuaciones diferenciales y determinantes. Aclaró los principios del cálculo desarrollándolos con la ayuda de límites y continuidad; fue el primero en demostrar rigurosamente el teorema de Taylor.

En óptica, desarrolló una teoría de las ondas, que más tarde resultó físicamente insatisfactoria; la fórmula de dispersión simple está asociada a su nombre. En elasticidad inició la teoría de la tensión mecánica, sus resultados tienen prácticamente el mismo valor que los de Simeon Poisson. Otra contribución significativa es la demostración del Teorema del número poligonal de Fermat. Creó el teorema del residuo y lo utilizó para derivar algunas de las fórmulas más interesantes relacionadas con series e integrales. También fue el primero en definir los números complejos como un par de números reales. También descubrió muchas fórmulas básicas en la teoría de series q.

En el campo de la mecánica de medios continuos, describió los fundamentos de un modelo de cuerpo continuo, el continuo de Cauchy, que todavía hoy representa una piedra angular de la ciencia de la construcción. Al desarrollar esta teoría, ideó muchos de sus teoremas analíticos. Cauchy fue un autor muy prolífico: la colección de todas sus obras, Œuvres complètes d’Augustin Cauchy, requirió 27 volúmenes y varios organismos matemáticos llevan su nombre, por ejemplo, la sucesión de Cauchy y numerosos teoremas de análisis. La complejidad de sus actividades lo sitúa entre los más grandes matemáticos.

Aunque generalmente riguroso, Cauchy estaba muy por delante de sus contemporáneos, por lo que uno de sus teoremas fue refutado por un «contraejemplo» de Niels Henrik Abel, que luego fue corregido mediante la inclusión de continuidad uniforme. En un artículo publicado en 1855, dos años antes de su muerte, Cauchy analizó algunos teoremas, uno de los cuales es similar al tema principal de muchos textos modernos sobre análisis complejo. En los textos modernos de control automático (Teoría del control), el tema principal se utiliza con frecuencia para derivar el criterio de estabilidad de Nyquist, llamado así por Harry Nyquist, que puede usarse para predecir la estabilidad de un amplificador con retroalimentación negativa o un sistema de control genérico con retroalimentación negativa. Por tanto, el trabajo de Cauchy tuvo un fuerte impacto tanto en las matemáticas puras como en la ingeniería aplicada.

Cauchy fue responsable de algunos de los primeros estudios sobre los grupos simétricos y por estos también se le considera uno de los fundadores de la teoría de grupos. También logró importantes resultados en teoría de números. También obtuvo resultados notables en la teoría de errores. En astronomía obtuvo un tratamiento más sencillo del movimiento del asteroide (2) Palas.

Augustin Louis Cauchy, muere en Sceaux, Lion, Francia, el 23 de mayo de 1857.