La Habana, Cuba. – El físico y matemático húngaro Eugene Paul Wigner, nace en Budapest, Hungría; el 17 de noviembre de 1902. Estudió en la Universidad de Princeton y adquirió la nacionalidad estadounidense en 1937. Fue uno de los cinco científicos que informaron al presidente Franklin D. Roosevelt en 1939 sobre el posible uso militar de la energía atómica, y durante la Segunda Guerra Mundial contribuyó al diseño de reactores de plutonio como parte del proyecto Manhattan. Su principal contribución fue aplicar la teoría de grupos a la mecánica cuántica. En 1927, Wigner llegó a la conclusión que en una reacción nuclear se conserva la paridad. Ello permaneció como un postulado básico de la física hasta 1958, cuando Yang y Lee demostraron que ciertos tipos de reacciones relacionadas con la fuerza débil, tal como el decaimiento beta no conservan la paridad. Wigner también realizó investigaciones sobre las interacciones fuertes que aglutinan a los neutrones y protones en el núcleo de los átomos, y demostró que dicha fuerza posee un radio de acción muy corto.

Fue obvio para él y Von Neumann, que como resultado del pacto de paz de Múnich en el otoño de 1938, era inminente el comienzo de la Segunda Guerra Mundial y que Inglaterra, Francia y los Estados Unidos estaban mal preparados para hacerle frente. Para proteger a sus padres ante el aumento del poder de Hitler, Wigner les convenció de mudarse a Estados Unidos. Unos meses más tarde llegó el anuncio del descubrimiento de la fisión nuclear por parte de Hahn y Strassmann en Berlín, junto con la evidencia de la gran cantidad de energía liberada en el proceso. Mientras tanto, Enrico Fermi, que había llevado a cabo gran parte del trabajo pionero sobre reacciones inducidas por neutrones, había dejado Italia y aceptado una cita en la Universidad de Columbia en Nueva York. Por otra parte, Leo Szilard, que se había trasladado de Berlín a Inglaterra cuando Hitler tomó el poder, decidió unirse a Fermi en New York, ya que él también temía que la guerra era inminente.

Leo Szilard, desde la década de 1920 estaba convencido que no pasaría mucho tiempo antes de que se desarrollara la tecnología para extraer una enorme cantidad de energía del núcleo atómico. Pronto comenzó a trabajar con Fermi y Wigner para determinar si era posible realizar una reacción en cadena de fisión inducida. A finales del invierno de 1938 – 1939, concluyeron que la probabilidad de éxito era alta, siempre y cuando pudieran contar con los recursos económicos necesarios. Einstein, Szilard y Wigner envían una carta al presidente Roosevelt en julio de 1939 donde describen las potencialidades de una bomba nuclear y la advertencia de que, dado que los alemanes descubrieron la fisión, lo más probable es que los alemanes fueran los primeros en desarrollarse. Se necesitaron dos años y medio, el inicio de la Segunda Guerra Mundial, y el bombardeo de Pearl Harbor, para que el gobierno de Estados Unidos finalmente, decidiera lanzar un programa amplio para investigar la fisión y sus aplicaciones militares.

Wigner sentó las bases para la aplicación de los principios de simetría a la mecánica cuántica, un logro que le valió el Premio Nobel de Física en 1963 (junto a J. Hans D. Jensen y Maria Goeppert-Mayer) «por su contribución a la teoría del núcleo atómico y de las partículas elementales, en especial por el descubrimiento y aplicación de los importantes principios de simetría». Sobre la base de estos fundamentos, la simetría llegó a desempeñar un papel central en el desarrollo de la física durante la segunda mitad del siglo XX, mucho más allá de los trabajos del propio Wigner. Le gustaban las simetrías, como las rotaciones en las cuales las observaciones no cambian cuando la transformación de simetría se aplica de manera uniforme a todo. Por lo general trabajamos con sistemas de mecánica cuántica que poseen un número finito de grados de libertad. Las teorías que involucran simetrías espontáneamente rotas son hoy la base de la descripción del magnetismo, superconductividad, la interacción electrodébil unificada, y muchos de los conceptos empleados en el intento de desarrollar teorías que proporcionan una mayor comprensión unificada de las fuerzas entre las partículas fundamentales. La posteridad recordará por mucho tiempo a Wigner por proveer nuevas herramientas poderosas para el físico teórico, así como por su trabajo comparativamente básicos en el desarrollo de los reactores nucleares.

Eugene Paul Wigner, muere en Princeton, Estados Unidos; el 1 de enero de 1995.